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We study a symmetric randomly moving line interacting by exclusion with a
wall. We show that the expectation of the position of the line at the origin when
it starts attached to the wall satisfies the following bounds:

c1t1/4 [ Ett(0) [ c2t1/4 log t

The result is obtained by comparison with a ‘‘free’’ process, a random line that
has the same behavior but does not see the wall. The free process is isomorphic
to the symmetric nearest neighbor one-dimensional simple exclusion process.
The height at the origin in the interface model corresponds to the integrated flux
of particles through the origin in the simple exclusion process. We compute
explicitly the asymptotic variance of the flux and show that the probability that
this flux exceeds Kt1/4 log t is bounded above by const. t2−K. We have also
performed numerical simulations, which indicate Ett(0)2 ’ t1/2 log t as tQ..

KEY WORDS: Interface motion; entropic repulsion; particle flux; simple
exclusion process.

1. INTRODUCTION

We consider a process tt on

X={t ¥NZ : |t(x)−t(x+1)|=1, t(0) even}

the space of trajectories of nearest neighbor random walks that stay non
negative and such that at even ‘‘times’’ the walk visits even integers.



The generator of the process is given by

Lf(t)=1
2 C
x

1{t+Dt(x) dx \ 0}[f(t+Dt(x) dx)−f(t)] (1.1)

where dx is the infinite vector having 1 in the xth coordinate and zero on
the others. The sum t+adx is understood coordinatewise. The discrete
Laplacian D is defined by

Dt(x) :=t(x+1)−2t(x)+t(x−1) (1.2)

In words we can describe the dynamics as follows. The discrete Laplacian
assumes only three values, −2, 0 and 2. When the Laplacian is zero, the
interface does not move. When it is −2 or 2, at rate 12 it makes a jump of
length 2 in the same direction as the sign of the Laplacian. Over this
motion we impose a restriction to keep the process in X: the interface
cannot be negative, so we simply prohibit the jumps which violate the restric-
tion. This is the meaning of the indicator function 1{t+Dt(x) dx \ 0}
in the generator. We can think the prohibition of becoming negative as the
interaction by exclusion of the interface with a wall at −1. For shortness
we call tt the wall process.
Our main result is the following

Theorem 1.3. Let tt be the process with generator (1.1) and initial
flat configuration:

t0(x) :=x (mod 2) (1.4)

Then there exist positive constants c1 and c2 such that

c1t1/4 [ Ett(0) [ c2t1/4 log t (1.5)

for sufficiently large t.

Theorem 1.3 catches the effect of the ‘‘entropic repulsion’’ in a
stochastically moving interface interacting with a wall by exclusion.
The line induced in R2 by joining (x, tt(x)) to (x+1, tt(x+1)) for all

x ¥ Z has the same behavior as the interface between −1’s and 1’s in a zero-
temperature two-dimensional nearest-neighbors Ising model with a positive
external field in the semiplane below the diagonal x=y and with initial
condition ‘‘all plus’’ below the diagonal and ‘‘all minus’’ above it. See
Section 5 for details.
The equilibrium statistical mechanics of this model is well known. If

one considers the generator L restricted to the box [−L, L] with bound-
ary conditions tt(−L)=tt(L)=0, the invariant distribution is the uniform
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distribution in the set of nearest neighbors random walk trajectories start-
ing at time −L at the origin, finishing at time L at the origin and being
non negative for all intermediate times. Actually the uniform measure is
even reversible for the process. But the uniform measure in this set corre-
sponds to the law of a symmetric nearest neighbors random walk Xi con-
ditioned to the set {X−L=XL=0, Xi \ 0, i ¥ [−L, L]}. Hence, the typical
height of a configuration t with the invariant law in the bulk of the box is

t([rL]) ’ O(`rL)

More precisely, the normalized process process (L1/2t([Lr]), r ¥ [−1, 1])
converges as LQ. to Brownian excursion on [−1, 1]; see Theorem 2.6 of
Kaigh. (1)

Many papers deal with the problem of entropic repulsion in Equilib-
rium Statistical Mechanics. The role of the entropic repulsion in the
Gaussian free field was studied by Lebowitz and Maes, (2) Bolthausen
et al., (3) Deuschel (4) and Deuschel and Giacomin. (5)

Entropic repulsion for Ising, SOS and related models was discussed
in Bricmont et al., (6) Bricmont, (7) Holický and Zahradnı́k, (8) Cesi and
Martinelli, (9) Lebowitz et al., (10) Dinaburg and Mazel (11) and Ferrari and
Martı́nez. (12)

The exponent 1/4 for dynamic entropic repulsion was predicted by
Lipowsky (13) using scaling arguments. This exponent was then found
numerically by Mon et al., (14) Albano et al., (15) see Binder, (16) De Coninck
et al. (17) It has also been observed in real experiments by Bartelt et al. (18)

Further theoretical investigations of dynamics of lines, in relation to
experiments can be found in Blagojevic and Duxbury. (19)

Dynamic entropic repulsion for a line of finite extension L when t,
LQ. strongly depends on the ratio t/L2. The present paper deals with
L=. (analytical) or t/L2Q 0 (numerical). The case t/L2=O(1) has been
studied by Funaki and Olla. (20)

The exponent 1/4 also applies to the growth of fluctuations of an ini-
tially straight interface not interacting with the wall (see (2.59) later). For the
Gaussian case, explicit computations were made by Abraham and Upton, (21)

Abraham et al. (22) It was observed numerically in the two-dimensional
Ising model by Stauffer and Landau. (23)

The strategy to show Theorem 1.3 is to compare the wall process tt
with a free process zt having the same local dynamics as tt but not
interacting with the wall. The free process lives in

X0={z ¥ ZZ : |z(x)−z(x+1)|=1, z(0)=even}
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and its generator is

L0f(z)=
1
2 C
x
[f(z+Dz(x) dx)−f(z)] (1.6)

In the next section we prove that with flat initial condition the
variance of the height at the origin for the free process behaves as t1/2:

lim
tQ.
t−1/2Vzt(0)=

1

`p
(1.7)

We then couple the wall process and the free process in such a way
that

zt(x) [ tt(x) (1.8)

for all x and t. The free process has enough symmetry and, properly rescaled,
has uniformly bounded in time exponential moments. With these, (1.7) and
(1.8), we get the lower bound in (1.5).
The idea for the upperbound is to consider a family of free processes

with initial condition depending on t:

zat0 (x)=z0(x)+at

(a flat interface of height at). Then we fix at=ct1/4 log t, the constant c to
be determined later and exhibit a coupling under which

ts(0) [ z
at
s (0) (1.9)

for all s [ t with large probability. Combined with (1.7), inequality (1.9) is
the key for the upperbound in (1.5). The existence of exponential moments
(mentioned above) yields the moderate deviations result needed here.
The control of the fluctuations of the position at the origin of the

free process is obtained by an isomorphism between the free process and
the one-dimensional symmetric nearest-neighbor simple exclusion process.
Under this map, zt(0)=2Jt, where Jt is the integrated flux of particles at
the origin for the exclusion process. We compute explicitly the asymptotic
variance of the integrated flux for the flat initial condition in Theorem 2.17
later and obtain

lim
tQ.

VJt
`t
=

1

4`p
(1.10)
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De Masi and Ferrari (24) proved that the asymptotic variance of the
integrated flux when the initial configuration is distributed according to
a product measure with density 1/2 is given by

lim
tQ.

VJt
`t
=

1

2`2p
(1.11)

which is strictly bigger than (1.10). When the initial density is r, the asymp-
totic variance is given by r(1−r)`2/p. The method to show (1.10) and
(1.11) is based on duality and comparison with systems of independent
particles and it is inspired by Arratia, (25) who used these tools to compute
the variance of a tagged particle for the process starting with an (invariant)
product measure. However a modification of Arratia’s proof is needed in
(1.10) due to the deterministic character of the initial configuration.
The study of the flux in the simple exclusion process is done in Section 2.

In Section 3 we prove Theorem 1.3. Section 4 is devoted to numerical sim-
ulations. Section 5 shows the equivalence to the dynamics of a particular
zero temperature Ising model interface.

2. THE FREE PROCESS AND SIMPLE EXCLUSION

The simple exclusion process lives in {0, 1}Z and its generator is

Lexf(g)=1
2 C
x ¥ Z

[f(gx, x+1)−f(g)] (2.1)

where

gx, x+1(y)=˛g(y) if y ] x, x+1
g(x+1) if y=x
g(x) if y=x+1

(2.2)

It is convenient to construct the processes using the Harris graphical
construction.

Harris Graphical Construction. Let (Nt(x) : x ¥ Z) be a family
of independent Poisson processes of rate 1

2 . For each x, Nt(x) counts
the number of Poisson events associated to x in the time interval [0, t].
Denote dNt(x)=1{there is a Poisson event associated to x at time t}=
limhQ 0(Nt(x)−Nt−h(x)). Let gt be the process defined by

dgt(x)=(gt(x−1)−gt(x)) dNt(x)+(gt(x+1)−gt(x)) dNt(x+1) (2.3)
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The process is well defined because for each finite time t the value of the
process in a finite box can be determined by looking at only a finite but
random number of Poisson events and initial values. See for instance
Arratia. (25) In words, the motion can be described as follows. The Poisson
marks ofNt(x) are associated to the bond (x, x+1) and each time a Poisson
mark occurs, the contents of the associated bond are interchanged. It is
immediate to show that this process has generator (2.1).

Stirring Particles. To introduce the notion of duality and to deal
with the flux of particles it is convenient to follow the ‘‘stirring particles’’
as defined by Arratia. (25) Let Xxt be the position at time t determined by
Xx0=x and the equations

dXxt=dNt(X
x
t )−dNt(X

x
t −1) (2.4)

So that, each time a Poisson mark associated to one of the neighboring
bonds of a particle occurs, the particle jumps across the bond. Of course, if
both extremes of a bond are occupied, the particles jump simultaneously,
respecting the exclusion condition ‘‘at most one particle per site.’’ For each
t \ 0 the (random) map

xWXxt (2.5)

is a bijection of Z in Z. The (marginal)law of Xxt is a symmetric nearest
neighbor random walk starting at x.

Duality. Let yW Dyt be the inverse map defined by x=D
y
t if and

only if y=Xxt . The following ‘‘duality formula’’ holds immediately

gt(y)=g0(D
y
t ) (2.6)

So,

D
y ¥ A
gt(y)=D

y ¥ A
g0(D

y
t ) (2.7)

Notice that for a finite set of sites A, {Dyt : y ¥ A} has the same one-time
marginal as a simple exclusion process with initial condition A (here we are
identifying the configuration g with the set {x : g(x)=1}). When A={y}
(contains only one site), the one-time marginal Dyt has the same law as X

y
t

for all t \ 0.
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Integration by Parts Formula. Consider (Y it, Z
j
t) independent

random walks with the same marginals as the stirring process (X it, X
j
t).

The generator of the process (Y it, Z
j
t) is the following:

Uf(i, j)=1
2 C
e ¥ Z

2 : |e|=1

[f((i, j)+e)−f(i, j)] (2.8)

and the generator of the process Xt is

Vf(i, j)=˛
1
2 C
e ¥ Z

2 : |e|=1

[f((i, j)+e)−f(i, j)] if i− j > 1

1
2 f(j, i)+

1
2 f(i+1, j)+

1
2 f(i, j−1)−

3
2 f(i, j) if i− j=−1

1
2 f(j, i)+

1
2 f(i−1, j)+

1
2 f(i, j+1)−

3
2 f(i, j) if i− j=1

(2.9)

Hence, for i ] j,

Uf(i, j)−Vf(i, j)=− 12 1{|i−j|=1}(f(i, j)+f(j, i)−f(i, i)−f(j, j))
(2.10)

Let Ut and Vt be the semigroups generated by U and V respectively. Let
f: Z2Q R. Then

Ef(X it, X
j
t)−Ef(Y

i
t, Z

j
t)=[Vt−Ut] f(i, j)=F

t

0
Vs[U−V] Ut−sf(i, j) ds

(2.11)

where the last identity is the integration by parts formula (see Liggett (26)

Proposition 8.1.7). Now, using (2.10) to compute (2.11) we get for i ] j:

Ef(X it, X
j
t)−Ef(Y

i
t, Z

j
t)

=− 12 F
t

0
ds E(1{|X is−X

j
s |=1}[f(Y

Xit−s
t , ZX

j
t−s
t )+f(YX

j
t−s
t , ZX

i
t−s
t )

−f(YX
i
t−s
t , ZX

i
t−s
t )−f(YX

j
t−s
t , ZX

j
t−s
t )]) (2.12)

This identity will be used in the sequel.

Flux. Let Jt be the integrated flux of g particles through the point
−1/2 in the exclusion process:

Jt :=C
x < 0
g0(x) 1{Xxt \ 0}− C

x \ 0
g0(x) 1{Xxt < 0} (2.13)

A Dynamic One-Dimensional Interface Interacting with a Wall 711



where Xxt is the position at time t of the exclusion particle that at time zero
was at position x.

Replacing (1.4) in (2.13), we write

Jt :=C
i < 0

1{X2it \ 0}− C
i \ 0

1{X2it < 0} (2.14)

Jt is almost symmetric. Let

Ht :=C
i < 0

1{X2it \ 0}; H −t :=C
i \ 0

1{X2it < −1}; It :=C
i \ 0

1{X2it < 0}
(2.15)

Then, clearly,

Jt=Ht−It; Ht ’H
−

t; |H −t−It | [ 1 (2.16)

where ’ means identity in distribution and is justified in this case by
spatial and distributional symmetry.

Theorem 2.17. For the simple exclusion process with generator
(2.1) and initial condition g0=1−2t0, as defined in (1.4),

lim
tQ.

VJt
`t
=

1

4`p
(2.18)

Proof. Working from (2.14), we get

E(Jt)2=C
i < 0

P(X2it \ 0)+ C
i \ 0

P(X2it < 0)+2 C
i < 0

C
i < j < 0

P(X2it \ 0, X2jt \ 0)

+2 C
i \ 0

C
i > j \ 0

P(X2it < 0, X
2j
t < 0)−2 C

i < 0
C
j \ 0

P(X2it \ 0, X2jt < 0)
(2.19)

(EJt)2=C
i < 0

P2(X2it \ 0)+ C
i \ 0

P2(X2it < 0)

+2 C
i < 0

C
i < j < 0

P(X2it \ 0) P(X2jt \ 0)

+2 C
i \ 0

C
i > j \ 0

P(X2it < 0) P(X
2j
t < 0)

−2 C
i < 0

C
j \ 0

P(X2it \ 0) P(X2jt < 0) (2.20)
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Immediately we have:

C
i < 0

P(X2it \ 0)+C
i \ 0

P(X2it < 0)=C
i < 0

P(X it \ 0) (2.21)

and analogously for the P2 terms in (2.20). Using

P(A B)−P(A) P(B)=−(P(A Bc)−P(A) P(Bc))=P(Ac Bc)−P(Ac) P(Bc)
(2.22)

we get

VJt=Vt+Et (2.23)

where

Vt=C
i < 0

P(X it \ 0)− C
i < 0

P2(X it \ 0) (2.24)

and

Et=1 C
i, j < 0, i ] j

+ C
i, j \ 0, i ] j

+2 C
i < 0, j \ 0

2

×(P(X2it \ 0, X2jt \ 0)−P(X2it \ 0) P(X2jt \ 0))

=C
i ] j
(P(X2it \ 0, X2jt \ 0)−P(X2it \ 0) P(X2jt \ 0)) (2.25)

Since P(X it \ 0) P(X
j
t \ 0)=P(Y it \ 0, Z

j
t \ 0), we can use (2.12)

with f(i, j)=1{i \ 0, j \ 0} to get

P(X it \ 0, X
j
t \ 0)−P(X

i
t \ 0) P(X

j
t \ 0)

=− 12 F
t

0
C
y
P({X is, X

j
s}={y, y+1}) (P(Y

y
t−s \ 0)−P(Y

y+1
t−s \ 0))

2 ds
(2.26)

See also Theorem 2 of Ferrari et al. (27) for a probabilistic proof of the
previous identity. Translation invariance and self-duality of (X is, X

j
s)

implies that (2.26) equals

− 12 F
t

0
C
y
P({X0s , X

1
s }={i−y, j−y}) P

2(Y0t−s=y) ds (2.27)
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From (2.25)–(2.27),

Et=−
1
2 F

t

0
C
y
P2(Y0t−s=y) C

i ] j
P({X0s , X

1
s }={2i−y, 2j−y}) ds (2.28)

Since X0t ]X
1
t ,

C
i ] j

P({X0s , X
1
s }={2i−y, 2j−y})=2 P(X

1
s (mod 2)

=X0s (mod 2)=y (mod 2)) (2.29)

Let Ay={(i, j) ¥ Z2 : i (mod 2)=j (mod 2)=y (mod 2)}. We show below
that

lim
sQ.

P((X0s , X
1
s ) ¥ Ay)=1/4 (2.30)

uniformly in y. Hence,

lim
tQ.
t−1/2Et=−

1
4 lim
tQ.
t−1/2 F

t

0
C
y
P2(Y0s=y) ds (2.31)

Let Z0t be an independent copy of Y
0
t . Since ;y P

2(Y0s=y)=P(Y0t −
Z0t=0), changing variables the above limit equals

lim
tQ.

F
1

0
(st)1/2 P(Y0st−Z

0
st=0)

ds

`s
=F

1

0
lim
tQ.
(st)1/2 P(Y0st−Z

0
st=0)

ds

`s
(2.32)

where the interchange of the limit and the integral are guaranteed by the
local central limit theorem for (Y0t −Z

0
t ), which is a symmetric random

walk of rate 2. This also implies that (2.32) equals

F
1

0

1

`2p`2

ds

`s
=
1

`p
(2.33)

We conclude that

lim
tQ.
t−1/2Et=−

1

4`p
(2.34)
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To computeVt notice that

C
i < 0

P(X it \ 0)=C
i > 0

P(X0t \ i)=E((X0t )
+); (2.35)

C
i < 0

P2(X it \ 0)=C
i > 0

P2(X0t \ i)=C
i > 0

P(Y0t NZ0t \ i)=E[(Y0t NZ0t )+]
(2.36)

Thus

lim
tQ.
t−1/2Vt=E(X+)−E[(XNXŒ)+]=

1

2`p
(2.37)

where X and XŒ are i.i.d. standard normals.
Finally, substituting (2.34) and (2.37) in (2.23) we get (2.18). L

Proof of 2.30. The continuous time Markov chain (Y0t (mod 2),
Y1t (mod 2)) converges exponentially fast to the uniform distribution in
{(0, 1), (1, 0), (0, 0), (1, 1)}. This implies that there exist positive constants
C1, C2 such that

|P((Y is, Z
j
s) ¥ Ay)−1/4| [ C1e

−C2t (2.38)

uniformly in i, j, y. Writing fy(i, j) :=1{(i, j) ¥ Ay} and using (2.12) we get

|P((X0t , X
1
t ) ¥ Ay)−P((Y

0
t , Z

1
t ) ¥ Ay)|

[ 1
2 F

t

0
ds E(1{|X0s −X

1
s |=1}[fy(Y

X0t−s
t , ZX

1
t−s
t )+fy(Y

X1t−s
t , ZX

0
t−s
t )

−fy(Y
X0t−s
t , ZX

0
t−s
t )−fy(Y

X1t−s
t , ZX

1
t−s
t )]) (2.39)

[ 2 F
t

0
ds P(|X1s −X

0
s |=1) C1 e

−C2(t−s) (2.40)

(using (2.38)). Now |X1s −X
0
s | is a Markov chain in {1, 2,...} with rates

p(1, 2)=p(x, x+1)=p(x, x−1)=1/2, x > 1. It can be easily coupled to
a Markov chain in {0, 1, 2,...} starting in 0, say R0t , with rates p(0, 1)=1,
p(x, x+1)=p(x, x−1)=1/2, x > 0 in such a way that |X1s −X

0
s | \ R

0
s for

all s. Since R0t is a simple symmetric random walk reflected at the origin,
we get that limsQ. P(|X1s −X

0
s |=1) [ limsQ. P(|R0s | [ 1)=0 and thus,

from (2.40) and dominated convergence (after a change of variables sQ
t−sŒ), it follows that limtQ. P((X0s , X

1
s ) ¥ Ay)=limtQ. P((Y0s , Z

1
s ) ¥ Ay)

=1/4. L
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Lemma 2.41. Let Ht be as in (2.16) and H̃t=t−1/4[Ht−E(Ht)].
Then for all l ¥ R

lim sup
tQ.

E(elH̃t) [ e sl
2/2 (2.42)

where s=1/`2p.

Proof.

E(elH̃t)=
E[exp (lt−1/4;i < 0 1{X2it \ 0})]
exp (lt−1/4;i < 0 P(X

2i
t \ 0))

(2.43)

We will show that the quotient in (2.43) is bounded above by a con-
stant. For that, we need to evaluate the expected value in that equation.
Let l \ 0. We will argue below that

E 5exp 1lt−1/4 C
i < 0

1{X2it \ 0}26 [ D
i < 0

E[exp (lt−1/41{X2it \ 0})] (2.44)

The last expectation equals

1+[exp(lt−1/4)−1] P(X2it \ 0)

=1+[lt−1/4+(l2t−1/2/2)+o(t−1/2)] P(X2it \ 0) (2.45)

for all t large enough. The last expression is bounded above by

exp{[lt−1/4+(l2t−1/2/2)+o(t−1/2)] P(X2it \ 0)} (2.46)

Substituting into the right hand side of (2.44), we get

exp 3[(l2t−1/2/2)+o(t−1/2)] C
i < 0

P(X2it \ 0)4 (2.47)

as an upper bound for the quotient in (2.43). It is not difficult to see that
the expression on the exponent in (2.47) converges to e sl

2/2.
To finish the argument for l \ 0, we have to justify the inequality

(2.44). That follows from taking limits as MQ −. (and using monotone
convergence) on the respective inequalities gotten by replacing the infinite
sums by ;M< i < 0. These are justified by the fact that the functions
exp(t−1/4;M< i < 0 1{X2it > 0}) are bounded, symmetric and positive definite
for all M< 0. The inequalities then follow from Proposition 1.7, Chapter
VIII of Liggett. (26)
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For the case l < 0, we use the identity

C
i < 0

1{X2it \ 0}− C
i < 0

P(X2it \ 0)=−5C
i < 0

1{X2it < 0}− C
i < 0

P(X2it < 0)6

(2.48)

and a similar argument as above. L

Lemma 2.49. Let g0 be given by the flat condition as in Theorem 2.17.
Then

sup
t \ 0

E(e |Jt/t
1/4|) <. (2.50)

Furthermore for all K > 0 and all t large enough

P(|Jt | > Kt1/4 log t) [ ct−K (2.51)

where c is a constant.

Proof. The bound (2.50) follows straightforwardly from Lemma 2.41
and relations (2.16).
From the relations (2.16), to show (2.51) it is enough to prove the

result with |Ht−E(Ht)| replacing |Jt | in (2.51) (the constant of course does
not need to be the same). We have

P(|Ht | > Kt1/4 log t)=P(|H̃t | > log tK) [ cŒt−K (2.52)

where the last inequality follows from the exponential Markov inequality
and cŒ=supt \ 0 E(e |H̃t|) is finite by (2.50). L

Graphical Construction of Free Process. Let zt be the process
defined by

dzt(x)=Dzt(x) dNt(x) (2.53)

where the discrete Laplacian D was defined in (1.2). In words, each time a
Poisson mark of the process Nt(x) occurs, the height at x at time t decreases
or increases two unities, according to the value of the Laplacian at this
point at this time; if the Laplacian vanishes, no jump occurs. This process
has generator (1.6).

Lemma 2.54. Let g0(x)=z0(x+1)−z0(x). Then

gt(x)=zt(x+1)−zt(x) (2.55)
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where the processes zt and gt are defined by (2.3) and (2.53) and have
initial conditions g0 and z0 respectively. Furthermore,

zt(0)−z0(0)=2Jt (2.56)

Proof. Notice that from (2.55),

Dzt(0)=2(gt(−1)−gt(0)) (2.57)

Assume that there is a mark of the process Nt(−1) at time t. Then (2.57),
(2.3) and (2.53) imply that if gt(−1)−gt(0)=0 no changes occur neither
for gt(−1), gt(0) nor for zt(0); if gt(−1)−gt(0)=1, an exclusion particle
jumps from −1 to 0 and the free process at the origin jumps two units up;
if gt(−1)−gt(0)=−1, an exclusion particle jumps from 0 to −1 and the
free process at the origin jumps two units down. Identity (2.56) follows
from (2.55). L

Lemma 2.58. Let zt be the free process with flat initial condition
(1.4). Then

lim
tQ.

Vzt(0)

`t
=
1

`p
; (2.59)

sup
t \ 0

E(e |zt(0)/t
1/4|) <. (2.60)

and for all K > 0 and all t large enough

P(|zt(0)| > Kt1/4 log t) [ ct−K (2.61)

Proof. It follows from identity (2.56), the limit (2.18) and the bounds
(2.50) and (2.51) L

3. COUPLING THE WALL AND THE FREE PROCESSES

We construct graphically the wall process which simultaneously pro-
vides another graphical construction for the free process. Under this
construction the wall process dominates the free one. We consider two
independent families of Poisson processes with the same law as Nt(x)
called N+t (x) and N

−
t (x), to be used for upwards and downwards jumps,

respectively. The process satisfying the equations

dtt(x)=Dtt(x) 1{Dtt(x) > 0} dN
+
t (x)

+Dtt(x) 1{Dtt(x) < 0, tt(x)+Dtt(x) \ 0} dN
−
t (x) (3.1)

718 Dunlop et al.



has generator (1.1). The process zt satisfying

dzt(x)=Dtt(x) 1{Dtt(x) > 0} dN
+
t (x)+Dtt(x) 1{Dtt(x) < 0} dN

−
t (x)
(3.2)

has generator (1.6).
In words, when a time event of the process N+t (x) occurs at time t, the

process tt at site x and time t jumps two units upwards if Dtt(x) > 0. When
a time event of the process N−t (x) occurs at time t, the process tt at site x
and time t jumps two units downwards if Dtt(x) < 0 and the wall condition
tt(x)+Dtt(x) \ 0 holds. The process satisfying (3.2) follows the same
marks in the same manner but ignoring the wall condition. The difference
with the process satisfying (2.53) is that in this case the Poisson events Nt
are used for both upwards and downwards jumps; this construction is not
attractive in the sense that it does not satisfy (3.4) below.
Let r be a non negative integer and t rt and z

r
t be the processes defined

by (3.1) and (3.2) but with initial condition

t r0(x)=z
r
0(x)=r+x (mod 2) (3.3)

Notice that z0t and zt as defined in (2.53) have the same law but are
different processes. The processes tt and t

r
t defined by (3.1) and the same

initial condition satisfy

tt(0) [ t
r
t(0) (3.4)

for all r \ 0. This joint construction corresponds to what Liggett (26)

calls basic coupling.

Lemma 3.5. There exists a constant c > 0 such that for any K > 0
and t \ 0

P(tt(0) > 2Kt1/4 log t) [ ct2−K (3.6)

Proof. Let at=2Kt1/4 log t. Take r \ 0 and write

P(tt(0) \ at) [ P(t rt(0) \ at)

=P(t rt(0) \ at , t
r
t(0)=z

r
t (0))+P(t rt(0) \ at , t

r
t(0) ] z

r
t (0))

[ P(z rt(0) \ at)+P(t rt(0) ] z
r
t(0)) (3.7)

The first term in (3.7) will be bounded using Corollary 2.58. To bound the
second term notice that if the interacting process and the free process differ
at the origin this is due to a collision of the interacting process with
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the wall at some point x that separate the two processes at x at some time s;
the discrepancy then propagates and arrives to zero by time t. We fix an
a > 0 and separate the discrepancies in two classes: those that come from
the interval [−at, at] and those that come from outside this interval. If in
the time interval [0, t] the free process does not touch the wall in the space
interval [−at, at], then the discrepancy must come from outside. Hence,

{t rt(0) ] z
r
t (0)} … {z

r
t(x) < 0 for some s ¥ [0, t], x ¥ [−at, at]}

2 {a discrepancy from [−at, at]c reaches 0 up to time t} (3.8)

Observe that the law of z rt (x)−r is the same as the law of zt(0) and that
P(zs(0) < −r) [ P(zs(0) > r) due to the initial condition being non-negative.
Hence, fixing

r=at/2 (3.9)

the probability of the first event in the right hand side of (3.8) is bounded
by

(2at+1) P(zs(0) > at/2 for some s ¥ [0, t]) (3.10)

From (2.60) and the exponential Markov inequality, we have that sups [ t
P(zs(0) > r) [ ct−K for some constant c, so we can bound (3.10) with

(2at+1) F
t

0
ct−K ds [ (2a+1) ct2−K (3.11)

To bound the probability of the second event in the right hand side
of (3.8) notice that discrepancies cannot travel faster than Nt, a Poisson
process of parameter 1. Hence

P(a discrepancy from [−at, at]c reaches 0 up to time t)

[ 2P(Nt > at) [ 2 e−t(a+1−e) (3.12)

using the exponential Chebyshev inequality. Fixing a=2, and using the
bounds (3.10) and (3.12), the probability of (3.8) is bounded by

4 ct2−K+2 e−t(3−e) [ cŒt2−K (3.13)

for some constant cŒ and sufficiently large t. L
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Proof of Theorem 1.3. It follows straightforwardly from (2.60)
that z̃2t is uniformly integrable, where z̃t=t

−1/4zt(0). This, together with
(2.59), implies the lower bound in (1.5), as we will see now. Indeed,
(1.8) implies that t−1/4Ett(0) \ E |z̃t |. Now,

Vz̃t [ Ez̃2t=E(z̃2t ; z̃
2
t [M

2)+E(z̃2t ; z̃
2
t >M

2) [ME |z̃t |+EM (3.14)

uniformly in t, where M is an arbitrary positive number and EM Q 0 as
MQ.. Thus t−1/4Ett(0) \ (Vz̃t− EM)/M. We conclude that

lim inf
tQ.

t−1/4Ett(0) \ sup
M> 0

1 1
`p
− EM 2;M> 0 (3.15)

For the upperbound, we use 2.61 to obtain

Ett(0)
t1/4 log t

=C
k \ 0

P(tt(0) > kt1/4 log t) [ 4+C
k \ 5
cŒt2−k/2 [ c2 <. (3.16)

for some constant c2 <.. L

4. NUMERICAL SIMULATION

We have simulated the processes zt and tt numerically, using various
pseudo-random number generators. The interface is of length L with
periodic boundary conditions, so that the processes live in

X0L={z ¥ ZZ/LZ : |z(x)−z(x+1)|=1, z(0) even} (4.1)

or

XL={t ¥NZ/LZ : |t(x)−t(x+1)|=1, t(0) even} (4.2)

Time is an integer multiple of 2L−1, i.e., t ¥ (2L−1) N. For each time step,
a site x is chosen randomly according to the uniform measure on Z/LZ,
and the interface is updated with the same rules as in the continuous time
version of the processes. The transition operator corresponding to a time
step dt=2L−1 is

T0f(z)=f(z)+L−1 C
x
[f(z+Dz(x) dx)−f(z)] (4.3)

or

Tf(t)=f(t)+L−1 C
x

1{t+Dt(x) dx \ 0} [f(t+Dt(x) dx)−f(t)] (4.4)
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Tf(t) is the expected value of the function f evaluated at time 2L−1 (after
one step) when the initial configuration is t for the discretized version of
the process. The same interpretation is valid for T0f(z). By abuse of nota-
tion we call the discrete time versions of the process tt and zt as we did for
the continuous time versions. Notice that

lim
LQ.

Tf(t)−f(t))
dt

=Lf(t) ; lim
LQ.

T0f(z)−f(z))
dt

=L0f(z) (4.5)

The processes tt and zt are coupled in the simplest possible way: the same
random sequence of sites are used for both. Notice however that this
coupling is different from the one described in Section 3 (in particular it is
not attractive in the sense that it does not necessarily satisfy (1.8) but it is
faster). For L finite the discrete time and continuous time processes can be
identified up to a time change, using the ordered sequence of updated sites.
The random time involved in the time change has fluctuations which
should be negligible for our purposes.
The numerical samples for the data shown below were drawn using

either theMersenneTwister pseudorandom integer generator, seeMatsumoto
and Nishimura, (28) or the R250 pseudorandom generator, see Kirkpatrick
and Stoll. (29) The length L is 106 or 220=10242 and time runs up to 2.106

or 221. The number of calls to the generator for the realization of one
sample of length L up to time t is L.t/2 [ 1012, which of course is much less
than the period of the generator (a necessary but not sufficient condition
for reliability). We compute empirical averages

t2t=L
−1 C

x
tt(x)2, z2t=L

−1 C
x
zt(x)2 (4.6)

and empirical distribution functions

ft(n)=L−1 C
x

1{tt(x)=n}, f0, t(n)=L−1 C
x

1{zt(x)=n}, n ¥ Z (4.7)

scaled into

ft(s)=t1/4L−1 C
x

1{t−1/4tt(x)=s},

f0, t(s)=t1/4L−1 C
x

1{t−1/4zt(x)=s}, s ¥ t−1/4Z
(4.8)

which, extended to s ¥ R approximate the Schwartz distributions

f̃t(s)=L−1 C
x
d(t−1/4tt(x)−s), f̃0, t(s)=L−1 C

x
d(t−1/4zt(x)−s), s ¥ R

(4.9)
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where L−1;x is an ersatz for the expectation over a real random variable,
limit of t−1/4tt(x).
The processes were studied for time t [ 2L, whereas the effect of finite

size with periodic boundary conditions is expected to be visible only after a
time of order L2, the relaxation time of an interface of length L. The law of
large numbers in empirical averages as above is believed to be at work with
an effective number of weakly dependent variables of order L/t1/2: the
interface at time t can be thought of as a collection of L/t1/2 segments of
length t1/2, the different segments being weakly dependent. For t=L and
one sample of the process, we have only t1/2 independent segments, hence
an expected relative statistical error of order t−1/4. This explains the more
erratic behaviour at larger times in Fig. 1.
The numerical experiment clearly favors an asymptotic behavior

Ett(0)2 ’ t1/2 log t as tQ..
Figure 2 shows the scaled empirical distribution functions at various

large times. Clearly t−1/4zt(x) converges to a centered Gaussian random

0

0.5

1

1.5

2

500000 1e+06 1.5e+06 2e+06

 
 
 

π

ξ 2
/ t (averaged)

MT
R250

ξ / t1/4
(maximum probability)

1/

ζ 2
/ t (averaged)

fit

Fig. 1. From top to bottom, as function of time: t−1/2t2t together with best fit 1.62+
0.024 log t; the value of s where ft(s) is maximum, together with best fit `0.55+0.057 log t;
and t−1/2z2t together with the exact asymptotic value `1/p. Graphs labelled MT are averages
over 6 runs with the MT random generator with different seeds. Graphs labelled R250 are
averages over 5 runs with the R250 random generator with different seeds. Interface length is
L=220 or L=106.
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Fig. 2. ft(s) and f0, t(s) at large times, from the same data as in Fig. 1.

variable as expected. The distribution function of t−1/4tt(x) is markedly
asymmetrical. Zooming around s=0 indicates f.(0)=f

−

.(0)=0 and
f'.(0) > 0, and up to a possible logarithmic correction

ft(0)=L−1 C
x

1{tt(x)=0} ’ t−3/4 (4.10)

5. INTERFACE OF THE ISING MODEL AT ZERO TEMPERATURE

In this section we explain the relation of our model with the inter-
face of a particular Ising model at zero temperature. Let the ‘‘inverse
temperature’’ b \ 0 and st ¥ {−1,+1}Z

2
be the Ising model with generator

Lbf(s)=
1
2 C
x ¥ Z

2
cb(x, s) [f(sx)−f(s)]

with sx(z)=s(z) for z ] x ¥ Z2, sx(x)=−s(x) and cb(x, s) are the Glauber
rates

cb(x, s)=
e−bH(s

x)

e−bH(s
x)+e−bH(s)
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with Hamiltonian

H(s)=−C
x

C
y : |y−x|=1

s(x) s(y)−h C
x : x1 > x2

s(x)

for some positive magnetic field h > 0. Consider the case b=. and assume
that the starting configuration s0 is ‘‘all ones’’ below the diagonal and ‘‘all
minus ones’’ above or in the diagonal:

s0(x1, x2)=˛
+1, if x1 > x2;
−1, if x1 [ x2

(5.1)

In this case for all t the configuration st has the property that all sites have
either exactly two or no neighbor with opposite sign; furthermore, only
sites above or in the diagonal may be negative. As a consequence, for all
t \ 0 the rates c(x, st) are positive only for sites x above or in the diagonal
for which there are exactly two neighboring sites with different sign: under
initial condition (5.1),

c.(x, st)=˛1/2 if C
y : |y−x|=1

1{st(y) ] st(x)}=2 and x1 [ x2

0 otherwise

To get the wall process of Theorem 1.3 from the above dynamics with
initial condition (5.1), we first rotate the lattice by −45° and multiply
by `2, that is, we perform the transformationR : Z2Q Z22; R(x, y)=(x+y,
x−y), where Z22 :={(x, y) ¥ Z2 : x+y is even} is the even sublattice of Z2.
The above dynamics then induces a dynamics in {−1,+1}Z

2
2 given by

s̃t(z)=st(R−1z), z ¥ Z22, t \ 0. Defining t̃t(x) :=min {y : (x, y) ¥ Z22 and
s̃t(x, y)=−1}, x ¥ Z, t \ 0, we have that the wall process t · ( · ) with
generator (1.1) and initial configuration (1.4) has the same law as t̃ · ( · ).
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